Welcome to Geomate Journal (ESCI)

Memorial 1st issue published on 2011.11.11 (OPEN ACCESS)

Introduction:

- The "International Journal of GEOMATE" is a Scientific Journal of the GEOMATE International Society that encompasses a broad area in Geotechnique, Construction Materials and Environment.
- Special Issue: The Journal includes papers on Science, Engineering and Environment under the category of special issue.
- The key objective of this journal is to promote interdisciplinary research from various regions of the globe. Geomate meaning as GEO-MATE indicating earth friend or nature friend.
- The editorial board of the journal is comprised of extensively qualified researchers, academicians, scientists from Japan and other countries of the world.
- It is peer-reviewed journal that is published monthly (2011-2015 quarterly). All articles published in this journal are available on line.
- Contributors may download the manuscript preparation template for submitting paper or contact to the Editors-in-Chief [editor@geomatejournal.com].

Indexed in: SCOPUS, Thomson Reuters Web of Science (ESCI), Crossref, DOI, EBSCO, Gale Cengage Learning, Ulrichwebs, Global Impact Factor (GIF), etc.

SCOPUS Journal list: https://www.elsevier.com/solutions/scopus/content

ISI Master Journal List: http://ip-science.thomsonreuters.com/mjl/

Click on the banner below for next conferences:
The journal aims to become an efficient mean of publishing and distributing high quality information from the researchers, scientists and engineers. The main scopes are as follows:

- Advances in Composite Materials
- Computational Mechanics
- Foundation and Retaining Walls
- Slope Stability
- Soil Dynamics
- Soil-Structure Interaction
- Pavement Technology
- Tunnels and Anchors
- Site Investigation and Rehabilitation

- Ecology and Land Development
- Water Resources Planning
- Environmental Management
- Public Health and Rehabilitation
- Earthquake and Tsunami Issues
- Safety and Reliability
- Geo-Hazard Mitigation
- Case History and Practical Experience
- Others

The scope of special issues are as follows:

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Science</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Engineering</td>
<td>Environmental Science</td>
<td>Environmental Technology</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Chemistry and Chemical Sci.</td>
<td>Recycle Solid Wastes</td>
</tr>
<tr>
<td>Civil and Structural Engineering</td>
<td>Fisheries and Aquaculture Sciences</td>
<td>Environmental dynamics</td>
</tr>
<tr>
<td>Electrical and Electronic Eng.</td>
<td>Atmospheric Sciences</td>
<td>Atmospheric and Geophysics</td>
</tr>
<tr>
<td>Energy and Thermal Eng.</td>
<td>Botany and Biological Sciences</td>
<td>Physical oceanography</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>Genetics and Bacteriolog</td>
<td>Bio-engineering</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>Forestry Sciences</td>
<td>Environmental sustainability</td>
</tr>
<tr>
<td>Biological Engineering and Sciences</td>
<td>Geological Sciences</td>
<td>Resource management</td>
</tr>
<tr>
<td>Biological Systems Engineering</td>
<td>Materials Science and Mineralogy</td>
<td>Modelling and decision support tools</td>
</tr>
<tr>
<td>Biomedical and Genetic Engineering</td>
<td>Microbiology</td>
<td>Institutional development</td>
</tr>
<tr>
<td>Bioprocess and Food Engineering</td>
<td>Medical Sciences</td>
<td>Suspended and biological processes</td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td>Meteorology and Palaeo Ecology</td>
<td>Anaerobic and Process modelling</td>
</tr>
<tr>
<td>Industrial and Process Engineering</td>
<td>Pharmacology</td>
<td>Modelling and numerical prediction</td>
</tr>
<tr>
<td>Manufacturing Engineering</td>
<td>Physics and Physical Sci.</td>
<td>Interaction between pollutants</td>
</tr>
<tr>
<td>Mechanical and Vehicle Eng.</td>
<td>Plant Sciences and Systems Biology</td>
<td>Water treatment residuals</td>
</tr>
<tr>
<td>Materials and Nano Eng.</td>
<td>Psychology and Systems Biology</td>
<td>Quality of drinking water</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>Zoology and Veterinary Sciences</td>
<td>Distribution systems on potable water</td>
</tr>
<tr>
<td>Petroleum and Power Eng.</td>
<td></td>
<td>Reuse of reclaimed waters</td>
</tr>
<tr>
<td>Forest Industry Eng.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Editorial Board

Honorary Editor

E/Prof. Dr. Shoji Inoue,
Mie University, Japan

Editor-in-Chief:

Prof. Dr. Zakaria Hossain,
Mie University, Japan

Assistant Chief Editor:

Dr. Jim Shiau,
University of Southern Queensland, Australia

Associate Editors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Fumio Tatsuoka</td>
<td>Tokyo University of Science, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Mounir Bouassida</td>
<td>National School of Engineering of Tunis</td>
</tr>
<tr>
<td>Prof. Dr. Toshinori Sakai</td>
<td>Mie University, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Liila Robles Austriacio</td>
<td>Angles University Foundation, Philippines</td>
</tr>
<tr>
<td>Prof. Dr. Isabel Pinto</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Prof. Dr. Mohammad Shariful Islam</td>
<td>BUET, Bangladesh</td>
</tr>
<tr>
<td>Prof. Dr. Md. Shahin Hossain</td>
<td>Islamic University of Technology, Bangladesh</td>
</tr>
<tr>
<td>Prof. Dr. Soksun Horpibulsuk</td>
<td>Suranaree University of Technology, Thailand</td>
</tr>
<tr>
<td>Prof. Dr. Sai Vanapalli</td>
<td>University of Ottawa, Canada</td>
</tr>
<tr>
<td>Prof. Dr. Bujang B.K. Huat</td>
<td>Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia</td>
</tr>
<tr>
<td>Prof. Dr. A.S.M. Abdul Awal</td>
<td>Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia</td>
</tr>
<tr>
<td>Prof. Dr. Mark Jaksa</td>
<td>University of Adelaide, Australia</td>
</tr>
<tr>
<td>Prof. Dr. Ranjith Pathegama</td>
<td>Gamage, Monash University, Australia</td>
</tr>
<tr>
<td>Prof. Dr. Pedro Arrua</td>
<td>Universidad Tecnológica Nacional, Argentina</td>
</tr>
<tr>
<td>Prof. Dr. Pedro Arrua</td>
<td>Universidad Tecnológica Nacional, Argentina</td>
</tr>
<tr>
<td>Prof. Dr. Pedro Arrua</td>
<td>Universidad Tecnológica Nacional, Argentina</td>
</tr>
<tr>
<td>Prof. Dr. Dokter Zaman</td>
<td>University of Oklahoma, USA</td>
</tr>
<tr>
<td>Prof. Dr. Rafiquil Tarefder</td>
<td>University of New Mexico, USA</td>
</tr>
<tr>
<td>Prof. Dr. Shamsul I. Chowdhury</td>
<td>Roosevelt University, USA</td>
</tr>
<tr>
<td>Prof. Dr. Nemy Banthia</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Prof. Dr. Jing-Cai Jiang</td>
<td>University of Tokushima, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Shamsul I. Chowdhury</td>
<td>Roosevelt University, USA</td>
</tr>
<tr>
<td>Prof. Dr. Kaneco Satoshi</td>
<td>Mie University, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Kingshuk Roy</td>
<td>Nihon University, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Miguel A. Pando</td>
<td>University of North Carolina, USA</td>
</tr>
<tr>
<td>Prof. Dr. Mohammad Shariful Islam</td>
<td>Nihon University, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Mohammad Shariful Islam</td>
<td>Nihon University, Japan</td>
</tr>
<tr>
<td>Prof. Dr. Mohammad Shariful Islam</td>
<td>Nihon University, Japan</td>
</tr>
</tbody>
</table>

Sub-editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/Prof. Dr. Nagaratnam</td>
<td>James Cook University, Australia</td>
</tr>
<tr>
<td>Sivakugan</td>
<td>Griffith University, Australia</td>
</tr>
<tr>
<td>A/Prof. Dr. Srimala</td>
<td>University Sains Malaysia</td>
</tr>
<tr>
<td>Sreekantan</td>
<td></td>
</tr>
<tr>
<td>A/Prof. Dr. Basuony</td>
<td>University of Tabuk, KSA</td>
</tr>
<tr>
<td>El-Garhy</td>
<td>Suez Canal University, Egypt</td>
</tr>
<tr>
<td>A/Prof. Ali Hassan Ali</td>
<td>Universiti Teknologi Malaysia, Malaysia</td>
</tr>
<tr>
<td>Mahfouz</td>
<td></td>
</tr>
<tr>
<td>A/Prof. Dr. Zeki Candan</td>
<td>Istanbul University,</td>
</tr>
<tr>
<td></td>
<td>Dr. Animul Ahsan, UPM, Malaysia</td>
</tr>
<tr>
<td></td>
<td>A/Prof. Dr. John Victor Smith, RMIT</td>
</tr>
<tr>
<td>Editorial Assistants/Reviewers</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Mr. P.L.P. Wasantha, Monash University, Australia</td>
<td>Mr. Mohsen Hajhassani, Universiti Teknologi Malaysia, Malaysia</td>
</tr>
<tr>
<td>Dr. Navid Khayat, Islamic Azad University, Iran</td>
<td>Mr. Deepak Raj Bhat, Ehime University, Japan</td>
</tr>
<tr>
<td>Mr. Ahmad Hashim, University of Babylon, Iraq</td>
<td>Dr. Reza Mohammadpour Ghalati, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>Dr. Janaka Jagath Kumara, Tokyo University of Science, Japan</td>
<td>Dr. Rusnardi Rahmat, State University of Padjad, Indonesia</td>
</tr>
<tr>
<td>Dr. Aseel Hadi, Universitas Gadjah Mada, Iraq</td>
<td>Dr. Hasibun Naher, BRAC University, Bangladesh</td>
</tr>
<tr>
<td>Dr. Bo Zhang, University of Oklahoma, USA</td>
<td>A/Prof. Vo Quang Minh, Can Tho University, Vietnam</td>
</tr>
<tr>
<td>Engr. Saeed Nemati, Western Sydney University, Australia</td>
<td>Dr. Mohammad Rezania, University of Nottingham, UK</td>
</tr>
<tr>
<td>Dr. Md Fauzi Ahmad, Universiti Tun Hussein Onn Malaysia</td>
<td>A/Prof. Abdul Naser Abdul Ghani, Universiti Sains Malaysia</td>
</tr>
<tr>
<td>Dr. Choo Chung Siung, Swinburne University of Technology, Malaysia</td>
<td>Dr. Mohd Hairy Ibrahim, Sultan Idris Education University, Malaysia</td>
</tr>
<tr>
<td>Dr. Yogendra Tandel, GIDC Degree Engineering College, India</td>
<td>Dr. Parshas Vasantalal Dalal, Shri V. S. Naik Arts, Commerce and Science College, India</td>
</tr>
<tr>
<td>A/Prof. Waseem Ragab Azzam, Tanta University, Egypt</td>
<td>Dr. Sayag Mohamed Deni, Universiti Teknologi MARA, Malaysia</td>
</tr>
<tr>
<td>A/Prof. Bashar Tarawneh, The University of Jordan</td>
<td>A/Prof. Ali Habeeb, University of Babylon, Iraq</td>
</tr>
<tr>
<td>A/Prof. Jitender Grover, Maharshi Markandeshwar University, India</td>
<td>Prof. Valeriy Perminov, Tomsk Polytechnic University, Russia</td>
</tr>
<tr>
<td>A/Prof. Nabil Darwidjojo, Lampung State University, Indonesia</td>
<td>Prof. Ibrahim Said Rahim, National Research Centre, Cairo, Egypt</td>
</tr>
<tr>
<td>A/Prof. Hamed Farshab Aghajani, Azerbaijan Shahid Madani University, Iran</td>
<td>Dr. Heriansyah Putra, Universitas Jambi, Indonesia</td>
</tr>
<tr>
<td>Dr. Pushan Kumar Dutta, Rajiv Gandhi Memorial College of Engineering and Management, India</td>
<td>A/Prof. Vijayasekhar Jaliparthi, GITAM University, Hyderabad, India</td>
</tr>
<tr>
<td>Dr. Muhammad Zubair Khan, Federal Urdu University of Arts, Science & Technology, Pakistan</td>
<td>Dr. Lakshmi Venkata Prasad, National Institute of Technology, Sikkim, India</td>
</tr>
<tr>
<td>A/Prof. Rosliawati Zainoi, University of Malaya, Malaysia</td>
<td>Engr. Nasser Najibi, City University of New York, USA</td>
</tr>
<tr>
<td>A/Prof. Gautam Raj Jodh, Priyadarshini Indra Gandhi College of Engineering, India</td>
<td>A/Prof. R. S. Ajin, Geoinf Solutions Pvt. Ltd., India</td>
</tr>
<tr>
<td>A/Prof. Amorn Chaiyasat, Rajamangala University of Technology, Thailand</td>
<td>Dr. Hassan, Qatar University, Doha, Qatar</td>
</tr>
<tr>
<td>A/Prof. Aksara Puttivivadh, Chulalongkorn University, Thailand</td>
<td>Dr. Fatima Zahra Taib, Earth Sciences and Universe, Algeria</td>
</tr>
<tr>
<td>Dr. Yogendra Tandel, Government Engineering College, Davod, India</td>
<td>Dr. Chiupi Zhu, Ocean University of China, Qingdao City, China</td>
</tr>
<tr>
<td>A/Prof. Abdul Hakam, Andalas University, Indonesia</td>
<td>Dr. Tanakorn Phoo-ngernkham, Rajamangala University of Technology, Thailand</td>
</tr>
</tbody>
</table>

http://www.geomatejournal.com/editorial-board
Impact Factor by SCOPUS

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2009-2016 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJR</td>
<td>0.28</td>
</tr>
<tr>
<td>Cite per doc</td>
<td>0.48</td>
</tr>
<tr>
<td>Total cite</td>
<td>94</td>
</tr>
</tbody>
</table>

![Graph showing impact factor](http://www.geomatejournal.com/node/583)
International Journal of GEOMATE

Scopus coverage years: from 2011 to Present

Publisher: GEOMATE International Society

ISSN: 2186-2982 **E-ISSN:** 2186-2990

Subject area:
- Earth and Planetary Sciences: Geotechnical Engineering and Engineering Geology
- Engineering: Building and Construction
- Agricultural and Biological Sciences: Soil Science
- Environmental Science: Environmental Engineering

[View all documents](#) [Set document alert](#) [Journal Homepage](#)

CiteScore

CiteScore 2016

0.55

*CiteScore includes all available document types

CiteScoreTracker 2017

0.73

[View CiteScore methodology](#) [CiteScore FAQ](#)

CiteScore rank & trend

Earth and Planetary Sciences

Rank: #90/167 Percentile: 46th

Geotechnical Engineering and Engineering Geology

Rank: #83/149 Percentile: 44th

Scopus content coverage

CiteScore rank

[View CiteScore trends](#) [Add CiteScore to your site](#)

Last updated on 24 April, 2018

Updated monthly

Metrics displaying this icon are compiled according to Snowball Metrics, a collaboration between industry and academia.

About Scopus

- What is Scopus
- Content coverage
- Scopus blog
- Scopus API
- Privacy matters

Language

- 日本語に切り替える
- 切換到簡体中文
- 切換到繁體中文
- Русский язык

Customer Service

- Help
- Contact us

Copyright © 2018 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Cookies are set by this site. To decline them or learn more, visit our Cookies page.
Articles (2018 / volume 15 / issue 48)

1. SHEAR STRENGTH ENHANCEMENT OF COMPACTED SOILS USING HIGH-CALCIUM FLY ASH-BASED GEOPOLYMER
 Soe Thiha, Chanodorn Lertsuriyakul and Decho Phueakphum
 Article Type: Research Article View Abstract No of Download = 344 Pages (1-9)

2. LIQUEFACTION SIMULATION AND RELATED BEHAVIOR OF UNDERGROUND STRUCTURE ON OSAKA GULF COAST
 Keita Sugito, Tetsuya Okano and Ryoichi Fukagawa
 Article Type: Research Article View Abstract No of Download = 323 Pages (10-15)

3. ASSESSING THE IMPACT OF POSITIVE PRESSURE VENTILATION ON THE BUILDING FIRE – A CASE STUDY
 Rajmund Kuti, Geza Zolyomi and Orsolya K. Kegyes-Brassai
 Article Type: Research Article View Abstract No of Download = 312 Pages (16-21)

4. REINFORCEMENT EFFECT OF GEOGRID IN THE BALLAST AND SUB-BALLAST OF THE RAILWAY TRACK
 Saad Farhan Ibrahim, Ali Jabbar Kadhim and Harith Basim Khalaf
 Article Type: Research Article View Abstract No of Download = 299 Pages (22-27)

5. DETERMINATION OF THE APPROPRIATE IRRIGATION METHODS BASED ON SOIL ANALYSIS FOR UPLAND FIELDS IN MIE PREFECTURE OF JAPAN
 Abdul Saboor Rahmany, Hajime Narioka, Takamitsu Kajisa and Homayoon Ganji
 Article Type: Research Article View Abstract No of Download = 294 Pages (28-33)

6. REVIEW OF THE INFLUENCING FACTORS OF INTEGRATED WASTE MANAGEMENT
 Mohamad Satori, Erri N. Megantara, Ina Primiana F.M.S, Budhi Gunawan
 Article Type: Review Article View Abstract No of Download = 298 Pages (34-40)

7. DEVELOPMENT OF A PROFESSIONAL QUALIFICATION FOR CONSTRUCTION SURVEYORS IN THAILAND
 Supacha Siriwongyingcharoen, Sunchai Inthapichai and Narin Sridokmai
 Article Type: Research Article View Abstract No of Download = 279 Pages (41-47)

8. LESSONS AND ACHIEVEMENTS FROM THE MERSEY FOREST BY NETWORKING PARTNERSHIP FOR TWENTY YEARS
 Tomoko Miyagawa, Clare Olver, Noriko Otsuka, Takefumi Kurose and Hirokazu Abe
 Article Type: Research Article View Abstract No of Download = 266 Pages (48-54)
9. THE INFLUENCE OF THE JAKARTA BAY RECLAMATION ON THE SURROUNDING TIDAL ELEVATION AND TIDAL CURRENT
Harman Ajiwibowo and Munawir Bintang Pratama

Article Type: Research Article View Abstract No of Download = 258 Pages (55-65)

10. A REVIEW OF SELECTED UNEXPECTED LARGE SLOPE FAILURES
Marthinus Sonnekus and John Victor Smith

Article Type: Review Article View Abstract No of Download = 241 Pages (66-73)

11. RESPONSE OF DIODIA VIRGINIANA (RUBIACEAE) APPLIED TO DAM RESERVOIR SLOPES AS A COVER PLANT, JAPAN
Taizo Uchida, Yuya Imamura, Yoshifumi Kochi, Mamoru Yamada, Kunihiko Fukaura, Aki Matsumoto, Wi... Haller and Lyn A. Gettys

Article Type: Research Article View Abstract No of Download = 226 Pages (74-78)

12. MULTIPLE OBJECTIVE MANAGEMENT STRATEGIES FOR COASTAL AQUIFERS UTILIZING NEW SURROGATE MODELS
Alvin Lal and Bithin Datta

Article Type: Research Article View Abstract No of Download = 215 Pages (79-85)

13. CORRELATION AMONG THE SOIL PARAMETERS OF THE KARNAPHULI RIVER TUNNEL PROJECT
Khondoker Istiak Ahmad, Masnun Abrar, Sultan Al Shaflan and Hossain Md. Shahin

Article Type: Research Article View Abstract No of Download = 200 Pages (86-90)

14. BEHAVIOR OF SEGMENTAL TUNNEL LININGS UNDER THE IMPACT OF EARTHQUAKES: A CASE STUDY FROM THE TUNNEL OF HANOI METRO SYSTEM
Gospodarikov Alexandr and Thanh Nguyen Chi

Article Type: Research Article View Abstract No of Download = 231 Pages (91-98)

15. INFLUENCE OF HEAT-AND-POWER ENTERPRISES ON THE HYDROSHPHERE
Tatyana Germanovna Korotkova, Syvatoslav Andreevich Bushumov, Svetlana Dmitrievna Burlaka, Natz... Istoshina and Hazret Ruslanovich Siukhov

Article Type: Research Article View Abstract No of Download = 252 Pages (99-106)

16. PORTLAND CEMENT CONTAINING FLY ASH, EXPANDED PERLITE, AND PLASTICIZER FOR MASONRY AND PLASTERING MORTARS
Satakhun Detphan, Tanakorn Phoo-ngernkham, Vanchai Sata, Chudapak Detphan and Prinya Chindaprasirt

Article Type: Research Article View Abstract No of Download = 256 Pages (107-113)

17. APPLICATION OF SWAN MODEL FOR HINDCASTING WAVE HEIGHT IN JEPARA COASTAL WATERS, NORTH JAVA, INDONESIA
Yati Muljati, Ricky Lukman Tawekal, Andojo Wurjanto, Jaya Kelvin, and Widodo Setiyo Pranowo

Article Type: Research Article View Abstract No of Download = 268 Pages (114-120)

18. CO-BENEFIT ASSESSMENT OF LOGISTICS OPTIMIZATION PROGRAMS: THE CASE OF THE PHILIPPINE GREATER CAPITAL REGION

http://wwwgeomatejournalcom/articles20181548
19. **CHARACTERIZATION OF RECYCLED AGGREGATE FOR USE AS BASE COURSE MATERIAL**
 Kongrat Nokkaew

20. **PHYSICAL MODELING OF PROPOSED POROUS DRAINAGE SYSTEM TO SOLVE INUNDATION PROBLEM**
 Ahmad Rifa and Noriyuki Yasufuku

21. **REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING PALM SHELL CHARCOAL ACTIVATED BY NAOH**
 Muhammad Faisal and Asri Gani, Abubakar

22. **EARTHQUAKE MICROZONATION STUDY ON BATUBESI DAM OF NUHA, EAST LUWU, SOUTH SULAWESI, INDONESIA**
 Sunaryo, Harti Umbu Mala, and Anom Prasertio

23. **THE CARBON FOOTPRINT OF NATURAL GAS AND ITS ROLE IN THE CARBON FOOTPRINT OF ENERGY PRODUCTION**
 Oleg E. Aksyutin, Alexander G. Ishkov, Konstantin V. Romanov, Vladimir A. Grachev

24. **PRELIMINARY STUDY OF LANDSLIDE IN SRI MULYO, MALANG, INDONESIA USING RESISTIVITY METHOD AND DRILLING CORE DATA**
 Adi Susilo, Eko Andi Suryo, Fina Fitriah, Muwardi Sutasoma and Bahtiar

25. **COMPRESSIVE STRENGTH MODELLING OF CONCRETE MIXED WITH FLY ASH AND WASTE CERAMICS USING k-NEAREST NEIGHBOR ALGORITHM**
 Kenneth Jae T. Elevado, Joenel G. Galupino and Ronaldo S. Gallardo

26. **STABILIZATION OF SANDY SOIL USING RECYCLE WASTE TIRE CHIPS**
 Mohammed Abdullateef Al-Neami

27. **THE CHANGES OF ENVIRONMENT AND AQUATIC ORGANISM BIODIVERSITY IN EAST COAST OF SIDOARJO DUE TO LAPINDO HOT MUD**
 Tarzan Purnomo and Fida Rachmadiarti
28. ASSESSING URBAN WATER SUPPLY SYSTEM IN NORTHEASTERN THAILAND: WATER QUALITY AND AUTHORITY ORGANIZATION
Jareeya Yimrattanabavorn, Oranee Rungrueang, Sudjit Karuchit and Pensupa Wirikitkhul

Article Type: Research Article **View Abstract** **No of Download** = 227 **Pages** (187-194)

29. STABILITY CHART FOR UNSUPPORTED SQUARE TUNNELS IN HOMOGENEOUS UNDRAINED CLAY
Jim Shiau, Mohammad Mirza Hassan and Zakaria Hossain

Article Type: Research Article **View Abstract** **No of Download** = 208 **Pages** (195-201)

APPLICATION OF SWAN MODEL FOR HINDCASTING WAVE HEIGHT IN JEPARA COASTAL WATERS, NORTH JAVA, INDONESIA

*Yati Muliati1,2, Ricky Lukman Tawekal1, Andojo Wurjanto1, Jaya Kelvin1, and Widodo Setryo Pranowo3,4

1Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia.
2Faculty of Civil Engineering and Planning, Institut Teknologi Nasional (Itenas) Bandung, Indonesia.
3Marine Research Center, Indonesian Ministry of Marine Affairs & Fisheries.
4Department of Tech. Hydrography, Naval Postgraduate School (SITAL).

*Corresponding Author, Received: 26 Feb. 2018, Revised: 19 Mar. 2018, Accepted: 19 Apr. 2018

ABSTRACT: SWAN (Simulating Wave Near-shore) is a numerical wave model for hindcasting/forecasting wave parameters in coastal areas. This numerical model is chosen because it is suitable for shallow water. This study was conducted to verify the results of wave height hindcasting in Jepara coastal waters. This is expected to support wave characteristic research based on wave forecasting for 10 years in the waters between Java, Sumatera and Kalimantan. The model is run with the third-generation mode (GEN3), which allow wind input, quadruplet and triad interactions, whiteness, and breaking. Wind data is obtained from ECMWF (European Centre for Medium-Range Weather Forecasts) and the bathymetry from GEBCO (General Bathymetric Chart of The Oceans). The validation of the model and buoy data during July - December 1993 shows a good result (Root Mean Square Error = 0.166 and correlation/ linear regression = 0.807). Based on the literature, qualitatively the model has been verified with other simulation from another model in the same location.

Keywords: SWAN Model, Hindcasting, Jepara Coastal Waters, Significant Wave Height, Validation

1. INTRODUCTION

Considering the difficulty to obtain waveform measurement data in Indonesia, wind wave hindcasting was often used in onshore and offshore building planning. There is a significant difference between measurement results and forecasting [1], so it needs to be verified with the measurement results.

The purpose of this study is to find whether the SWAN set up give results in accordance with the measurement results in Jepara coastal waters. This study was conducted to support the research of wave characteristics based on wave forecasting for 10 years in the waters between Java, Sumatera and Kalimantan using SWAN model from TU Delft (Delft University of Technology).

SWAN (Simulating Wave Near-shore) is a numerical wave model for hindcasting wave parameters in coastal areas. This numerical model was chosen because the reference is suitable for shallow water. Shallow water has many nonlinear factors that affect the wave greatly. In addition, this model can be accessed directly without the need to pay licenses and has been used widely by researchers in various countries. SWAN is now a viable option for operational high-resolution nonstationary wave predictions at sub-regional scale [2]. It is relatively quick to set up and user-friendly in operation, but some terms should be improved and not all interactions are included (e.g. bottom friction). It is expensive in terms of computer time. Running long time series on a PC is prohibitive [3]. Besides that, the difference in density gives very significance effect to the relative wave amplitude [4].

This research is concerned the development of a methodology for nesting from ocean to local scale using SWAN, where waves are first simulated for a larger area using a coarse grid and then downscaled to a finer grid covering a smaller area. The boundary conditions for the finer grid are derived from the coarse grid computation. There are several nesting techniques that can be implemented to produce a high-resolution local scale model. One common difference in techniques is the source of the boundary data for the coarse model. The most holistic approach is to nest from a global domain to a regional/sub-oceanic domain and, lastly, to a local coastal domain [5].

Gorman et.al [6] show the simulations were validated using data from an inshore site in 30 m water depth at Mangawhai on the north-east coast of the North Island. Use of the nested model improved the agreement between model and measured significant wave height, decreasing the scatter index from 0.50 to 0.26. The suite of tools provided by the hindcast and localized, shallow water models can provide accurate new wave information for most of New Zealand's coastline.
2. PHYSICAL PROCESSES

All information about the sea surface is contained in the wave variance spectrum or energy density \(E(\sigma, \theta) \), distributing wave energy over (radian) frequencies \(\sigma \) (as observed in a frame of reference moving with current velocity) and propagation directions \(\theta \) (the direction normal to the wave crest of each spectral component). Usually, wave models determine the evolution of the action density \(N(x,t; \sigma, \theta) \) in space \(x \) and time \(t \). The action density is defined as \(N = E/\sigma \) and is conserved during propagation in the presence of ambient current, whereas energy density \(E \) is not. It is assumed that the ambient current is uniform with respect to the vertical co-ordinate and is denoted as \(U \) [7].

The evolution of the action density \(N \) is governed by the action balance equation, which reads [8]:

\[
\frac{\partial N}{\partial t} + \nabla_x \left[(c_y + U)N\right] + \frac{\partial c_y N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma} \tag{1}
\]

The left-hand side is the kinematic part of this equation. The second term denotes the propagation of wave energy in two-dimensional geographical \(x \)-space, with the group velocity \(c_g = \partial \sigma / \partial k \) following from the dispersion relation \(\sigma^2 = g|k| \tanh(k|d|) \) where \(k \) is the wave number vector and \(d \) the water depth. The third term represents the effect of shifting of the radian frequency due to variations in depth and mean currents. The fourth term represents depth-induced and current-induced refraction. The quantities \(c_x \) and \(c_o \) are the propagation velocities in spectral space \((\sigma, \theta) \). The right-hand side contains \(S_{tot} \), which is the source/sink term that represents all physical processes which generate, dissipate, or redistribute wave energy. They are defined for energy density \(E(\sigma, \theta) \). The second term in Eq. (2) can be recast in Cartesian, spherical or curvilinear co-ordinates. For small-scale applications, the spectral action balance equation may be expressed in Cartesian co-ordinates as given by [7]

\[
\frac{\partial N}{\partial t} + \frac{\partial c_x N}{\partial x} + \frac{\partial c_y N}{\partial y} + \frac{\partial c_\sigma N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma} \tag{2}
\]

with \(c_x = c_{gx} + U_x \), \(c_y = c_{gy} + U_y \) \tag{3}

With respect to applications at shelf sea or oceanic scales the action balance equation may be recast in spherical co-ordinates as follows [7]:

\[
\frac{\partial N}{\partial t} + \frac{\partial c_x N}{\partial x} + \frac{\partial c_y N}{\partial y} + \frac{\partial c_\sigma N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma} \tag{4}
\]

with longitude \(\lambda \) and latitude \(\phi \) [7].

In shallow water, six processes contribute to \(S_{tot} \):

\[
S_{tot} = S_m + S_{nl} + S_{ab} + S_{ds,w} + S_{ds,b} + S_{br,br} \tag{5}
\]

These terms denote, respectively, wave growth by the wind, nonlinear transfer of wave energy through three-wave and four-wave interactions and wave decay due to whitecapping, bottom friction and depth-induced wave breaking [7].

There are some options in SWAN regarding the model set-up which pertains to the type and/or parameterization of the formulations used for the source terms in Eq. (5). The user can choose between three different formulations for \(S_{nw} \), which accounts for the linear and exponential growth of waves due to wind [5].

Wind energy to waves is commonly described as the sum of linear and exponential growth. There are two wind growth models in SWAN that are available for us. Both expressions of wind growth model of them share the following form (Eq. (6)) and the same linear growth (Eq. (7)), while the exponential growth term is different.

\[
S_{nw}(\sigma, \theta) = A + Bx E(\sigma, \theta) \tag{6}
\]

In which \(A \) describes linear growth and \(Bx E \) exponential growth [9].

Linear growth by wind:

\[
A = \frac{a}{g2\pi}(U, \max(0, \cos(\theta - \theta_w)))4H \tag{7}
\]

with

\[
H = \exp(-(|\sigma/\sigma|^4)) \text{ and } \sigma_{pl} = \frac{0.13g}{2U_w^2}2\pi \tag{8}
\]

Exponential growth:

a. Expression from [10]:

\[
B = \max(0, 0.25 \frac{\rho_a}{\rho_w} \left(28 \frac{U_w}{C_{ph}} \cos(\theta - \theta_w) - 1 \right)) \sigma \tag{9}
\]

in which \(U_w \) is friction velocity, \(\theta_w \) is wind direction, \(C_{ph} \) is the phase speed and \(\rho_a \) and \(\rho_w \) are the density of air and water, respectively.

b. Expression from [11]:

\[
B = \beta \frac{\rho_a}{\rho_w} \left(\frac{U_w}{C_{ph}} \right)^2 \max(0, \cos(\theta - \theta_w)))^2 \sigma \tag{10}
\]

where \(\beta \) is the Miles“constant”.

The dissipation term of wave energy is represented by the summation of three different contributions: white-capping \(S_{ds, w} \), bottom friction \(S_{ds,b} \) and depth-induced breaking \(S_{br,br} \) [7].
3. MATERIALS AND METHODS

3.1 Available Data

The scarcity of time series oceanographic datasets, especially the observational wave data, is one of the challenges to develop the ocean model in Indonesia. However, data is obtained from long-term wave observation located in Jepara, Central Java (110.772°E, 6.398°S), which has granted the access from PT. Geomarindex. The data is from July to December 1993 with three-hour temporal resolution. The available parameter is only the wave height values.

The bathymetry data is obtained from General Bathymetric Chart of the Oceans (GEBCO) with a spatial resolution of 30 arc-sec (~1 km). There is no available local bathymetry dataset to cover the coastal waters. Therefore, it is applied to all model domains. The only forcing included in this wave model is from the wind. It is obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) with a spatial resolution of 0.125 degrees (~13.75 km) and 6-hour temporal resolution. The FNMOC global WW3 model is vastly used for open boundary condition of wave forcing in several studies, e.g. [5], however, wave data in 1993 is unavailable.

The significant wave height output from the ECMWF reanalysis (ERA)-Interim reanalysis is used as a comparison to our model. The nearest point to the buoy station is located at 110.75°E and 6.375°S. The distance between these two points is 4.16 km or 4 grid cells in the smallest domain.

3.2 Model Domain

The SWAN model provides nesting application to the parent grid. Hence, there is two model domains, the Java Sea (JS) domain as the parent grid and Jepara Coastal Waters (JCW) domain as the child/nested grid (Fig. 1). The JS domain extends from Aceh to Bali that includes two marginal seas, i.e. the South China Sea and the Java Sea, while the JCW domain covers the Jepara coastal waters (110.450°E-110.918°E and 5.996°S - 6.450°S). The JS and JCW domains have 1/8 degree and 1/96 grid resolutions with the total of 176x120 and 44x48 grid-cells, respectively.

The bathymetry in this region is relatively shallow (<100 m), with the presence of narrow straits (e.g. Malacca Strait) and small islands that add the complexity of the model domain (Fig. 1). The deep waters are concentrated in the edge of model domain, i.e. North of Sumatera (top-left), North of Kalimantan (top-right), and North of Bali (bottom-right). The depth range is 500-3300 m.

3.3 Model Setup

The non-stationary 2D wave model within SWAN is simulated with 1-hour interval from July to December 1993. The frequency range is set at 0.3-1.1 Hz and divided linearly into 38 frequencies. The number of directional bins is set for 72 due to the physical characteristics of the study areas, such as the geographical conditions, bathymetry gradients, and global and local wind effects [12]. In addition, the first order, backward space, backward time (BSBT) numerical scheme are employed for both model domains with three maximum number of iterations and 98% percentage of accuracy for the wet/dry condition.

The same physics setup is applied to both domains. GEN3 wave model with Komen linear growth formulation and the white capping default configurations were used [10]. Further, the triad and quad wave-wave interaction, as well as breaking and diffraction processes are activated by using the default configurations [7]. For bed friction, the dissipation coefficients (Cf) was 0.019 as suggested for the region with smooth sediment characteristic, while the default value was 0.038 [7]. The vegetation, turbulence, and fluid mud are omitted in the physical processes due to the absence of datasets. Finally, the model is simulated in parallel computing with OpenMP (Open Multi-Processing) to reduce computation times.

Fig.1 Grid-view of wave model domains; (left) JS domain with isobath at 50 m and (right) JCW domain with 10 m of isobath interval. Red point denotes a buoy location.
4. RESULTS AND DISCUSSION

4.1 Model Validation

Wave statistics for the buoy sites were computed from the hindcast. Occurrence statistics for significant wave height \(H_s \), mean direction \(Q_{mem} \), and second moment mean period \(T_m^2 \) were computed. Significant wave height results were compared with data over the relevant deployment periods.

Significant wave height at a wave buoy site as simulated by the wave model and as measured by the buoy, shown as time series in Fig. 2a and regression in Fig. 2c, with the line of best fit and equivalence lines shown by dashed and solid lines respectively.

In December 1993, there appeared to be extreme wave height (see Fig. 2b) and after further study of the cause, this was due to Manny typhoon where propagation of waves from the center of the cyclone Manny to Jepara occurred over 10 days (see Fig. 2d). The result of forecasting with SWAN shows a wave distribution pattern corresponding to the buoy data, except for the duration of Oct-Nov 1993 for which the wave height of the measurement needs to be reconfirmed.

Factors that may affect the inaccuracy of the model:
1. Coarse resolution of bathymetry dataset used in this model
2. Global wind data are usually unable to achieve the magnitude of extreme events
3. The absence of wave-current interaction in the model and static water level (zero value)
4. The grid on the model is also still rough and in rectangular form
5. The accuracy of the buoy data for validation also needs to be confirmed again, especially the Oct-Nov 1993 timeframe, because the wave height was only about 10-15 cm.

![Fig. 2](image_url)

Fig. 2 (a) and (b) are showing time-series of significant wave height from SWAN model (blue line), ECMWF model (red line) and buoy observation (black dots) for whole observation period and during Typhoon Manny, respectively. (c) \(H_s \) density plot of SWAN & Jepara Buoy, and (d) Typhoon Manny propagation track that obtained from Joint Typhoon Warning Center (JTWC) and plotted in Google Earth.
Table 1. Significant wave height (Hs) statistic in the Jepara Buoy station and the model accuracy. R is correlation coefficient and SI is scattered index.

<table>
<thead>
<tr>
<th>Data</th>
<th>Basic Stats</th>
<th>Model Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Jepara Buoy</td>
<td>0.017</td>
<td>1.878</td>
</tr>
<tr>
<td>SWAN</td>
<td>0.041</td>
<td>1.406</td>
</tr>
<tr>
<td>ECMWF*</td>
<td>0.071</td>
<td>1.955</td>
</tr>
</tbody>
</table>

* Significant wave height output from the ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis (ERA)-Interim reanalysis

4.2 Comparison with Existing Models

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an independent intergovernmental organization supported by 34 states. ECMWF is both a research institute and a 24/7 operational service, producing and disseminating numerical weather predictions to its Member States. This data is fully available to the national meteorological services in the Member States [13].

The result of SWAN modeling is compared with the wave forecasting result from ECMWF as shown in Fig 2a and 2b. Both models exhibit similar wave distribution patterns, although Hs ECMWF model results tend to be always larger than the Hs model of SWAN.

Statistical analysis for Hs model and Hs buoy included minimum, maximum, mean, standard deviation and model accuracy values against the measurement results are presented in Table 1 where the Hs model SWAN (0.807) showed a better correlation value than Hs ECMWF (0.778). Root Mean Square Error (RMSE) for Hs SWAN is smaller than Hs ECMWF. This shows the SWAN modeling more closely to the measurement results, in other words, the SWAN model setting is good.

4.3 Monsoonal Significant Wave Characteristics

Examples of the significant wave (Hs) and wind pattern models in east monsoon and west monsoon are presented in Fig.3, both also show normal conditions and extreme wave (typhoon) condition.

Wind patterns during east and west monsoon are distinctly recognized based on its direction. The east monsoon winds travel from southeast to northwest, while the west monsoon winds are the opposites. The east monsoon wind or Australian monsoon wind blows from Australia to the equator and is known as the dry season that peaks in June-July-August. The west monsoon wind or Asian monsoon wind blows from the Asian continent with water vapors that cause rain, so it is called the rainy season and reaches its peak in December-January-February. Wind data treated in accordance with both monsoon wind patterns and can be seen in Fig. 3a and 3b (right).

In normal condition as depicted in Fig. 3a and 3b, Hs is strongly associated with the wind pattern. Although, occasionally there are cyclones coming from Indian Ocean (south of Java) or typhoon in the South China Sea region and causing a disturbance within model domains for up to 15 days. One of the examples is the Typhoon Manny, which was originated in the Western Pacific. Fig. 3c shows the generation of typhoon within model domains and it has significantly amplified the wave height.

In normal conditions, the wind speed 5-7 m/s produces Hs 0.5-1.2 meter (Fig. 3a and 3b), while at maximum Hs condition between July-December 1993, wind speed 8-15 m/s yield Hs 1-3 meters (Fig.3d). The relative maximum Hs in the model domain reaches 3.16 m. It is located in the south of Kalimantan (see Fig. 3d). Meanwhile, in Jepara coastal waters, the increasing maximum Hs is up to 1.41 m.

The results of statistical calculations for the four areas in the study area obtained the Hs min-max and average Hs (meter) in the east monsoon conditions for the Java Sea 0.43-0.99 (average 0.64) Karimata Strait 0.18-0.98 (0.51), Malacca Strait 0.02-0.58 (0.24), South China Sea 0.09-1.21 (0.47) and for the west monsoon; Java Sea 0.08-2.44 (average 0.57) Karimata Strait 0.09-2.09 (0.56), Malacca Strait 0.07-0.77 (0.28), South China Sea 0.21-2.93 (0.97).

This results are suitable when compared to Hs for 9 years forecasting by Wicaksana et.al (2015) [14] where at the west monsoon in Karimata Strait of Hs 1.5-3 m (Hs SWAN 2.09 m) and Java Sea 0.5-2.5 m (Hs SWAN 2.44 m), while at the east monsoon in Karimata Strait Hs 1.5-2.5 m (Hs SWAN 0.98 m) and Java Sea 1-2 m (Hs SWAN 0.99 m). Suitable in question is data analysis results for 6 months entered in the range of 9-year forecasting results.

4.4 Future Works Application

This study is expected to support wave characteristic research based on wave forecasting for 10 years in the waters between Java, Sumatera and Kalimantan. The wave forecasting research needed 10-year wind data (2007 - 2016) from
Fig. 3 Significant wave height with directional spreading (left) and wind speed (right) within the large model domain in different conditions: (a) east monsoon, (b) west monsoon, (c) typhoon Manny generation, and (d) relative maximum Hs for the period of July to December 1993.

ECMWF and bathymetry data from GEBCO where both data use the same resolution used in this study. The results of the research are expected to help practitioners to plan the structure of the beach building, coastal protection, the structure of the building at sea, or marine structures. For example, as mentioned by Rathod et.al [15]; Piles used in marine structures are subjected to lateral loads from the impact of berthing ships and from waves. Piles used to support retaining walls, bridge piers and abutments, and machinery foundations carry combinations of vertical and horizontal loads.

The 10-year wave data can be used as a basis to determine the probability of 25, 50, or even 100 years in the future. The use of significant wave heights with specific return periods is associated with the risk of planned building structures. The higher the risk value the longer return period is chosen.
Significant wave forecasting is also required for shipping safety. Until now the Karimata Strait (between south Sumatera and Kalimantan Island) is still a trading channel and the Java Sea becomes one of the important national service channels, especially in the present role in the Indonesian toll lane [14].

5. CONCLUSION

The result of forecasting with SWAN shows a wave distribution pattern corresponding to the buoy data, except for the duration of Oct-Nov 1993 for which the wave height of the measurement needs to be reconfirmed.

Refers to the Root Mean Square Error (RMSE) value (0,166) and correlation/ linear regression value (0.807), and the waveform pattern corresponding to the monsoon pattern, it can be stated that this SWAN model is valid.

The setting up of wave hindcast for Jepara waters will be helpful for improving the level of shallow sea wave hindcast in the waters between Java, Sumatera, and Kalimantan.

6. ACKNOWLEDGEMENTS

The authors would like to thank PT. Geomarindex/PT. Wiratman & Associates for providing observation wave data and also thank the ECMWF and GEBCO for providing access to wind and bathymetry data.

Sincere gratitude to scientists at Delft University of Technology (TU Delft) who developed the SWAN model and special thanks to the Marine and Coastal Data Laboratory, Indonesian Ministry of Marine Affairs & Fisheries for providing places of simulations.

7. REFERENCES

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.